William Thomson, 1st Baron Kelvin From Wikipedia, the free encyclopedia



Download 109.04 Kb.
Page2/2
Date03.03.2018
Size109.04 Kb.
#42552
1   2

Scientist to engineer

Thomson became scientific adviser to a team with Whitehouse as chief electrician and Sir Charles Tilston Bright as chief engineer but Whitehouse had his way with the specification, supported by Faraday and Samuel F. B. Morse.

Thomson sailed on board the cable-laying ship Agamemnon in August 1857, with Whitehouse confined to land owing to illness, but the voyage ended after just 380 miles when the cable parted. Thomson contributed to the effort by publishing in the Engineer the whole theory of the stresses involved in the laying of a submarine cable, and showed that when the line is running out of the ship, at a constant speed, in a uniform depth of water, it sinks in a slant or straight incline from the point where it enters the water to that where it touches the bottom.

Thomson developed a complete system for operating a submarine telegraph that was capable of sending a character every 3.5 seconds. He patented the key elements of his system, the mirror galvanometer and the siphon recorder, in 1858.

However, Whitehouse still felt able to ignore Thomson's many suggestions and proposals. It was not until Thomson convinced the board that using a purer copper for replacing the lost section of cable would improve data capacity, that he first made a difference to the execution of the project[19].

The board insisted that Thomson join the 1858 cable-laying expedition, without any financial compensation, and take an active part in the project. In return, Thomson secured a trial for his mirror galvanometer, about which the board had been unenthusiastic, alongside Whitehouse's equipment. However, Thomson found the access he was given unsatisfactory and the Agamemnon had to return home following the disastrous storm of June 1858. Back in London, the board was on the point of abandoning the project and mitigating their losses by selling the cable. Thomson, Cyrus Field and Curtis M. Lampson argued for another attempt and prevailed, Thomson insisting that the technical problems were tractable. Though employed in an advisory capacity, Thomson had, during the voyages, developed real engineer's instincts and skill at practical problem-solving under pressure, often taking the lead in dealing with emergencies and being unafraid to lend a hand in manual work. A cable was finally completed in August 5.



Disaster and triumph

Thomson's fears were realised and Whitehouse's apparatus proved insufficiently sensitive and had to be replaced by Thomson's mirror galvanometer. Whitehouse continued to maintain that it was his equipment that was providing the service and started to engage in desperate measures to remedy some of the problems. He only succeded in fatally damaging the cable by applying 2,000 V. When the cable failed completely Whitehouse was dismissed, though Thomson objected and was reprimanded by the board for his interference. Thomson subsequently regretted that he had acquiesced too readily to many of Whitehouse's proposals and had not challenged him with sufficient energy.

A joint committee of inquiry was established by the Board of Trade and the Atlantic Telegraph Company. Most of the blame for the cable's failure was found to rest with Whitehouse. The committee found that, though underwater cables were notorious in their lack of reliability, most of the problems arose from known and avoidable causes. Thomson was appointed one of a five-member committee to recommend a specification for a new cable. The committee reported in October 1863.

In July 1865 Thomson sailed on the cable-laying expedition of the SS Great Eastern but the voyage was again dogged with technical problems. The cable was lost after 1,200 miles had been laid and the expedition had to be abandoned. A further expedition in 1866 managed to lay a new cable in two weeks and then go on to recover and complete the 1865 cable. The enterprise was now feted as a triumph by the public and Thomson enjoyed a large share of the adulation. Thomson, along with the other principals of the project, was knighted on November 10, 1866.

To exploit his inventions for signalling on long submarine cables, Thomson now entered into a partnership with C.F. Varley and Fleeming Jenkin. In conjunction with the latter, he also devised an automatic curb sender, a kind of telegraph key for sending messages on a cable.

Later expeditions

Thomson took part in the laying of the French Atlantic submarine communications cable of 1869, and with Jenkin was engineer of the Western and Brazilian and Platino-Brazilian cables, assisted by vacation student James Alfred Ewing. He was present at the laying of the ParĂ¡ to Pernambuco section of the Brazilian coast cables in 1873.

Thomson's wife had died on June 17, 1870 and he resolved to make changes in his life. Already addicted to seafaring, in September he purchased a 126-ton schooner, the Lalla Rookh and used it as a base for entertaining friends and scientific colleagues.

In June 1873, Thomson and Jenkin were onboard the Hooper, bound for Lisbon with 2,500 miles of cable when the cable developed a fault. An unscheduled 16-day stop-over in Madeira followed and Thomson became good friends with Charles R. Blandy and his three daughters. On May 2, 1874 he set sail for Madeira on the Lalla Rookh. As he approached the harbour, he signalled to the Blandy residence Will you marry me? and Fanny signalled back Yes. Thomson married Fanny, 13 years his junior, on June 24, 1874.



Other activities and contributions

Thomson's tide-predicting machine

Thomson introduced a method of deep-sea sounding, in which a steel piano wire replaces the ordinary land line. The wire glides so easily to the bottom that "flying soundings" can be taken while the ship is going at full speed. A pressure gauge to register the depth of the sinker was added by Sir William.

About the same time he revived the Sumner method of finding a ship's place at sea, and calculated a set of tables for its ready application.

His most important aid to the mariner is, however, the adjustable compass, which he brought out soon afterwards. It is a great improvement on the older instrument, being steadier, less hampered by friction, and the deviation due to the ship's own magnetism can be corrected by movable masses of iron at the binnacle.

Sir William was an enthusiastic yachtsman. His interest in all things relating to the sea perhaps arose, or at any rate was fostered, by his experiences on the Agamemnon and the Great Eastern. Charles Babbage was among the first to suggest that a lighthouse might be made to signal a distinctive number by occultations of its light; but Sir William pointed out the merits of the Morse code for the purpose, and urged that the signals should consist of short and long flashes of the light to represent the dots and dashes.



Thomson did more than any other electrician up to his time to introduce accurate methods and apparatus for measuring electricity. As early as 1845 he pointed out that the experimental results of William Snow Harris were in accordance with the laws of Coulomb. In the Memoirs of the Roman Academy of Sciences for 1857 he published a description of his new divided ring electrometer, based on the old electroscope of Johann Gottlieb Friedrich von Bohnenberger and he introduced a chain or series of effective instruments, including the quadrant electrometer, which cover the entire field of electrostatic measurement.

Geology and theology
Statue of Lord Kelvin; Botanic Gardens, Belfast

Thomson remained a devout believer in Christianity throughout his life and saw chapel as part of his daily routine, though he was no fundamentalist. He saw his Christian faith as supporting and informing his scientific work, as is evident from his address to the annual meeting of the Christian Evidence Society, May 23, 1889.

One of the clearest instances of this interaction is in his estimate of the age of the Earth. Given his juvenile work on the figure of the Earth and his interest in heat conduction, it is no surprise that he chose to investigate the Earth's cooling and to make historical inferences. Thomson believed in an instant of Creation but he was no creationist in the modern sense. He contended that the laws of thermodynamics operated from the birth of the universe and envisaged a dynamic process that saw the organisation and evolution of the solar system and other structures, followed by a gradual "heat death". He developed the view that the Earth had once been too hot to support life and contrasted this view with that of uniformitarianism, that conditions had remained constant since the indefinite past. He contended that "This earth, certainly a moderate number of millions of years ago, was a red-hot globe ... ."

After the publication of Sir Charles Darwin's On the Origin of Species in 1859, Thomson saw evidence of the, relatively short, habitable age of the Earth as tending to contradict an evolutionary explanation of biological diversity. He was soon drawn into public disagreement with Darwin's supporters Tyndall and T.H. Huxley.

Thomson ultimately settled on an estimate that the Earth was 100,000,000 years old but by the time of his death it was becoming apparent that the effects of radioactivity accounted for a much greater age. Though Thomson continued to defend his estimates, privately he admitted that they were most probably wrong.


Lord Kelvin
Download 109.04 Kb.

Share with your friends:
1   2




The database is protected by copyright ©ininet.org 2024
send message

    Main page