Seppo Suominen Essays on cultural economics


Estimation: analysis of variance



Download 2.66 Mb.
Page20/31
Date19.10.2016
Size2.66 Mb.
#4243
1   ...   16   17   18   19   20   21   22   23   ...   31

4.4Estimation: analysis of variance

All the variables of ISSP 2007 are not used in this study. Only those that are related to the concerts, theatre and exhibitions are used according to the purpose of the study. The questionnaire has the following question: How often during the past 12 months on your leisure did you go to concerts, theatrical performances, art exhibitions, etc.?” The descriptive statistics are presented in table 4-3.


Table 4: ISSP 2007, ”How often in your leisure do you go to concerts, exhibitions, theatre etc.?”




Daily

Several times per week

Several times per month

Less often

Never

Missing

Frequency

0

4

71

1040

209

30

%

0

0,3

5,2

76,8

15,4

2,2

% of responses

0

0,3

5,4

78,5

15,8

--

Women, %

0

0,3

6,6

81,2

11,3

n = 741

Men, %

0

0,3

3,9

74,3

21,5

n = 568






















Women, %



















15 < age < 24

0

1,1

4,5

78,7

15,7

n = 89

25 < age < 34

0

0

1,9

85,5

15,5

n = 103

35 < age < 44

0

0

0,8

88,9

10,3

n = 117

45 < age < 54

0

0

6,7

85,2

8,1

n = 135

55 < age < 64

0

0

10,2

80,8

9,0

n = 167

65 < age

0

0,7

12,3

74,6

12,3

n = 130

Men, %



















15 < age < 24

0

0

5,2

58,6

36,2

n = 58

25 < age < 34

0

1,3

2,7

78,7

17,3

n = 75

35 < age < 44

0

0

4,2

80,2

15,6

n = 96

45 < age < 54

0

0

3,5

76,3

20,2

n = 114

55 < age < 64

0

0,8

4,7

73,2

21,3

n = 127

65 < age

0

0

3,1

73,5

23,5

n = 98





















It is most reasonable to divide from the point of view of further analysis the visit activity into three classes: regularly (daily, several times per week, several times per month), occasionally (less often) and never. The results of the analysis of variance are presented in table 4-4.


Table 4: Visitor density: concerts, theatrical performances, art exhibitions, ANOVA

Grouping variable

F-value (sig.)

ή2

Grouping variable

F-value (sig.)

ή2

ANOVA
















Gender (S)

26,218 (0,000)

0,019

Year of birth(Y)

1,319 (0,055)

0,062



















Province (A)

2,624 (0,000)

0,037

Education (E)

10,175 (0,000)

0,060



















MANOVA

Gender (S)

20,068 (0,000)




Gender (S)

12,695 (0,000)




Year of birth (Y)

1,366 (0,036)




Province (A)

2,612 (0,000)




S*Y

1,025 (0,426)

0,130

S*A

0,663 (0,857)

0,064



















Gender (S)

25,716 (0,000)




Year of birth (Y)

1,099 (0,291)




Education (E)

9,638 (0,000)




Province (A)

1,755 (0,022)




S*E

2,115 (0,032)

0,089

Y*A

1,029 (0,363)

0,523



















Year of birth (Y)

1,655 (0,002)




Province (A)

1,188 (0,260)




Education (E)

9,394 (0,000)




Education (E)

3,594 (0,000)




E*Y

1,127 (0,102)

0,374

A*E

1,054 (0,328)

0,193



















Gender (S)

7,485 (0,006)




Gender (S)

11,581 (0,001)




Year of birth (Y)

1,295 (0,078)




Province (A)

1,429 (0,104)




Province (A)

1,569 (0,060)




Education (E)

3,329 (0,001)




S*Y

1,171 (0,193)




S*A

1,221 (0,231)




S*A

0,681 (0,813)




S*E

1,598 (0,121)




Y*A

1,123 (0,100)




A*E

1,144 (0,137)




S*Y*A

1,178 (0,126)

0,688

S*A*E

1,403 (0,010)

0,314



















Gender (S)

15,496 (0,000)




Year of birth (Y)

1,764 (0,002)




Year of birth (Y)

1,510 (0,010)




Province (A)

1,775 (0,027)




Education (E)

8,314 (0,000)




Education (E)

4,735 (0,000)




S*Y

1,233 (0,120)




Y*A

1,162 (0,101)




S*E

1,575 (0,129)




Y*E

1,324 (0,018)




Y*E

1,226 (0,018)




A*E

1,174 (0,188)




S*Y*E

1,149 (0,152)

0,535

Y*A*E

0,975 (0,532)

0,861

Education: 1 = pupil, student, 2 = elementary school, 3 = comprehensive school, 4= vocational school or course, 5= upper secondary school, 6 = college 7= university of applied sciences, 8 = bachelor, university, 9 = master, university

(significance in parenthesis)


The statistical programme (PASW 18) available did not conduct the multivariate analysis of variance (MANOVA) with four explanatory variables (gender, year of birth, place of province and education). On the basis of the results it is clear that the first hypothesis is supported: performing arts visitor density depends on gender, person’s age and education. Moreover, the regional supply has an effect. The variance analysis shows that every explanatory variable (gender, year of birth, place of province, and education) would alone separate into classes: regularly, occasionally and never. The joint effect of the explanatory variables is nearly always significant if the education variable is present. In the table 7 different genders have been examined separately. Both for women and men, education would seem to be the crucially important variable.


Table 45:

Table 4: Visitor density, concerts, theatrical performances, art exhibitions. Anova and Manova, Women and Men separately



Grouping variable

F-value (sig.)

ή2

Grouping variable

F-value (sig.)

ή2

ANOVA Men







ANOVA Women







Year of birth

1,007 (0,465)

0,112

Year of birth

1,454 (0,017)

0,116

Province

1,870 (0,014)

0,061

Province

1,202 (0,249)

0,031

Education

6,501 (0,000)

0,087

Education

5,186 (0,000)

0,055

MANOVA

Men







Women







Year of birth (Y)

1,007 (0,473)




Year of birth (Y)

1,198 (0,169)




Province (A)

1,208 (0,203)




Province (A)

0,655 (0,861)




Y*A

1,238 (0,066)

0,746

Y*A

1,002 (0,495)

0,621



















Year of birth (Y)

0,829 (0,807)




Year of birth (Y)

2,281 (0,000)




Education (E)

5,062 (0,000)




Education (E)

5,888 (0,000)




Y*E

1,035 (0,395)

0,527

Y*E

1,335 (0,006)

0,525



















Province (A)

1,413 (0,116)




Province (A)

1,021 (0,434)




Education (E)

2,724 (0,006)




Education (E)

1,819 (0,071)




A*E

1,447 (0,006)

0,370

A*E

0,924 (0,699)

0,232



















Year of birth (Y)

1,575 (0,051)




Year of birth (Y)

1,612 (0,018)




Province (A)

2,209 (0,013)




Province (A)

0,756 (0,752)




Education (E)

3,817 (0,001)




Education (E)

3,111 (0,004)




Y*A

1,533 (0,044)




Y*A

1,098 (0,303)




Y*E

1,573 (0,051)




Y*E

1,324 (0,078)




A*E

0,944 (0,514)




A*E

0,927 (0,566)




Y*A*E

--

0,948

Y*A*E

--

0,885

Even if the ISSP 2007 data would make it possible to use other explanatory variables, these are not used since, based on rather high values of ή2, the variables are adequate to explain consumers’ performing arts behaviour. Any single variable alone is not good enough, but a combination of the variables explains more.



Download 2.66 Mb.

Share with your friends:
1   ...   16   17   18   19   20   21   22   23   ...   31




The database is protected by copyright ©ininet.org 2024
send message

    Main page