Introduction – Cryptosporidium



Download 33.66 Kb.
Date05.08.2017
Size33.66 Kb.
Introduction – Cryptosporidium
1. Corso,P.S. et al. Cost of illness in the 1993 waterborne Cryptosporidium outbreak, Milwaukee, Wisconsin. Emerg. Infect. Dis. 9, 426-431 (2003).

2. Tyzzer,E.E. A sporozoan found in the peptic glands of the common mouse. Proc. Soc. Exp. Biol. Med. 5, 12-13 (1907).

3. Morgan-Ryan,U.M. et al. Cryptosporidium hominis n. sp. (Apicomplexa: Cryptosporidiidae) from Homo sapiens. J. Eukaryot. Microbiol. 49, 433-440 (2002).
Sequence and assembly of the genome of C. hominis
4. Akiyoshi,D.E., Feng,X., Buckholt,M.A., Widmer,G. & Tzipori,S. Genetic analysis of a Cryptosporidium parvum human genotype 1 isolate passaged through different host species. Infect. Immun. 70, 5670-5675 (2002).

5. Widmer,G. Genetic heterogeneity and PCR detection of Cryptosporidium parvum. Adv. Parasitol. 40, 223-239 (1998).

6. Widmer,G., Tchack,L., Chappell,C.L. & Tzipori,S. Sequence polymorphism in the beta-tubulin gene reveals heterogeneous and variable population structures in Cryptosporidium parvum. Appl. Environ. Microbiol. 64, 4477-4481 (1998).

7. Tzipori,S., Rand,W., Griffiths,J., Widmer,G. & Crabb,J. Evaluation of an animal model system for cryptosporidiosis: therapeutic efficacy of paromomycin and hyperimmune bovine colostrum-immunoglobulin. Clin. Diagn. Lab Immunol. 1, 450-463 (1994).

8. Widmer,G., Tzipori,S., Fichtenbaum,C.J. & Griffiths,J.K. Genotypic and phenotypic characterization of Cryptosporidium parvum isolates from people with AIDS. J. Infect. Dis. 178, 834-840 (1998).

9. Robertson,L.J., Campbell,A.T. & Smith,H.V. In vitro excystation of Cryptosporidium parvum. Parasitology 106 ( Pt 1), 13-19 (1993).

10. Birren,B., Mancino,V. & Shizuya,H. Genome Analysis: A Laboratory Manual., pp. 2411999).

11. Ewing,B., Hillier,L., Wendl,M.C. & Green,P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175-185 (1998).

12. Ewing,B. & Green,P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186-194 (1998).

13. Gordon,D., Abajian,C. & Green,P. Consed: a graphical tool for sequence finishing. Genome Res. 8, 195-202 (1998).

14. Bankier,A.T. et al. Integrated mapping, chromosomal sequencing and sequence analysis of Cryptosporidium parvum. Genome Res. 13, 1787-1799 (2003).

15. Abrahamsen,M.S. & et al. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science . 2004.

Ref Type: In Press

16. Widmer,G. et al. Animal propagation and genomic survey of a genotype 1 isolate of Cryptosporidium parvum. Mol. Biochem. Parasitol. (in press 2000), (2000).

17. Tanriverdi,S., Arslan,M.O., Akiyoshi,D.E., Tzipori,S. & Widmer,G. Identification of genotypically mixed Cryptosporidium parvum populations in humans and calves. Mol. Biochem. Parasitol. 130, 13-22 (2003).

18. Spano,F., Putignani,L., McLauchlin,J., Casemore,D.P. & Crisanti,A. PCR-RFLP analysis of the Cryptosporidium oocyst wall protein (COWP) gene discriminates between C. wrairi and C. parvum, and between C. parvum isolates of human and animal origin. FEMS Microbiol. Lett. 150, 209-217 (1997).

19. Carraway,M., Tzipori,S. & Widmer,G. A new restriction fragment length polymorphism from Cryptosporidium parvum identifies genetically heterogeneous parasite populations and genotypic changes following transmission from bovine to human hosts. Infect. Immun. 65, 3958-3960 (1997).

20. Barnes,D.A. et al. A novel multi-domain mucin-like glycoprotein of Cryptosporidium parvum mediates invasion. Mol. Biochem. Parasitol. 96, 93-110 (1998).

21. Blunt,D.S., Khramtsov,N.V., Upton,S.J. & Montelone,B.A. Molecular karyotype analysis of Cryptosporidium parvum: evidence for eight chromosomes and a low-molecular-size molecule. Clin. Diagn. Lab Immunol. 4, 11-13 (1997).

22. Le Blancq,S.M., Khramtsov,N.V., Zamani,F., Upton,S.J. & Wu,T.W. Ribosomal RNA gene organization in Cryptosporidium parvum. Mol. Biochem. Parasitol. 90, 463-478 (1997).

23. Spano,F. et al. Multilocus genotypic analysis of Cryptosporidium parvum isolates from different hosts and geographical origins. J. Clin. Microbiol. 36, 3255-3259 (1998).
Genome composition and structure
25. Su,X. & Wellems,T.E. Toward a high-resolution Plasmodium falciparum linkage map: polymorphic markers from hundreds of simple sequence repeats. Genomics 33, 430-444 (1996).

26. Strong,W.B. & Nelson,R.G. Gene discovery in Cryptosporidium parvum: expressed sequence tags and genome survey sequences. Contrib. Microbiol. 6, 92-115 (2000).

27. Duret,L. tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. Trends Genet. 16, 287-289 (2000).

28. Lowe,T.M. & Eddy,S.R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955-964 (1997).

29. Guay,J.M., Huot,A., Gagnon,S., Tremblay,A. & Levesque,R.C. Physical and genetic mapping of cloned ribosomal DNA from Toxoplasma gondii: primary and secondary structure of the 5S gene. Gene 114, 165-171 (1992).

30. Taghi-Kilani,R., Remacha-Moreno,M. & Wenman,W.M. Three tandemly repeated 5S ribosomal RNA-encoding genes identified, cloned and characterized from Cryptosporidium parvum. Gene 142, 253-258 (1994).

31. Gunderson,J.H. et al. Structurally distinct, stage-specific ribosomes occur in Plasmodium. Science 238, 933-937 (1987).

32. Widmer,G., Orbacz,E.A. & Tzipori,S. Constitutive expression of small subunit ribosomal RNA transcripts in Cryptosporidium parvum oocysts and intracellular stages. J. Parasitol. 85, 229-233 (1999).


The Proteome of C. hominis
33. Pearson,W.R. & Lipman,D.J. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. U. S. A 85, 2444-2448 (1988).

34. Pearson,W.R. Flexible sequence similarity searching with the FASTA3 program package. Methods Mol. Biol. 132, 185-219 (2000).

35. Camon,E. et al. The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Res. 32 Database issue, D262-D266 (2004).

36. Harris,M.A. et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 32 Database issue, D258-D261 (2004).


Metabolism in C. hominis.
37. Muller,M., pp. 109-1311998).

38. Hrdy,I. & Muller,M. Primary structure and eubacterial relationships of the pyruvate:ferredoxin oxidoreductase of the amitochondriate eukaryote Trichomonas vaginalis. J. Mol. Evol. 41, 388-396 (1995).

39. Brown,D.M., Upcroft,J.A. & Upcroft,P. A H2O-producing NADH oxidase from the protozoan parasite Giardia duodenalis. Eur. J. Biochem. 241, 155-161 (1996).

40. Sanchez,L.B., Galperin,M.Y. & Muller,M. Acetyl-CoA synthetase from the amitochondriate eukaryote Giardia lamblia belongs to the newly recognized superfamily of acyl-CoA synthetases (Nucleoside diphosphate-forming). J. Biol. Chem. 275, 5794-5803 (2000).

41. Martin,W. & Muller,M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37-41 (1998).

42. Rotte,C., Stejskal,F., Zhu,G., Keithly,J.S. & Martin,W. Pyruvate : NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol. Biol. Evol. 18, 710-720 (2001).

43. Stejskal,F., Slapeta,J., Ctrnacta,V. & Keithly,J.S. A Narf-like gene from Cryptosporidium parvum resembles homologues observed in aerobic protists and higher eukaryotes. FEMS Microbiol. Lett. 229, 91-96 (2003).

44. Jasso-Chavez,R. & Moreno-Sanchez,R. Cytosol-mitochondria transfer of reducing equivalents by a lactate shuttle in heterotrophic Euglena. Eur. J. Biochem. 270, 4942-4951 (2003).

45. Fayer,R., Trout,J.M. & Jenkins,M.C. Infectivity of Cryptosporidium parvum oocysts stored in water at environmental temperatures. J. Parasitol. 84, 1165-1169 (1998).

46. Petry,F. & Harris,J.R. Ultrastructure, fractionation and biochemical analysis of Cryptosporidium parvum sporozoites. Int. J. Parasitol. 29, 1249-1260 (1999).

47. Werk,R. & Bummer,W. Toxoplasma gondii: glucose-6-phosphate dehydrogenase. Trans. R. Soc. Trop. Meal. Hyg. 75, 189 (1981).

48. Barrett,M.P. The Pentose Phosphate Pathway and Parasitic Protozoa. Parasitol. Today 13, 11-16 (1997).

49. Entrala,E. & Mascaro,C. Glycolytic enzyme activities in Cryptosporidium parvum oocysts. FEMS Microbiol. Lett. 151, 51-57 (1997).

Tricarboxylic Acid Cycle and Oxidative Phosphorylation

50. Nihei,C., Fukai,Y. & Kita,K. Trypanosome alternative oxidase as a target of chemotherapy. Biochim. Biophys. Acta 1587, 234-239 (2002).

51. Roberts,C.W. et al. Evidence for mitochondrial-derived alternative oxidase in the apicomplexan parasite Cryptosporidium parvum: a potential anti-microbial agent target. Int.J.Parasitol. 2004.

52. Roberts,F. et al. Evidence for the shikimate pathway in apicomplexan parasites. Nature 393, 801-805 (1998).

53. Roberts,C.W. et al. The shikimate pathway and its branches in apicomplexan parasites. J. Infect. Dis. 185 Suppl 1, S25-S36 (2002).

54. Campbell,S.A. et al. A complete shikimate pathway in Toxoplasma gondii: an ancient eukaryotic innovation. Int. J. Parasitol. 34, 5-13 (2004).

55. Bode,R., Melo,C. & Birnbaum,D. Mode of action of glyphosate in Candida maltosa. Arch. Microbiol. 140, 83-85 (1984).

56. Marc,J. et al. Pesticide Roundup provokes cell division dysfunction at the level of CDK1/cyclin B activation. Chem. Res. Toxicol. 15, 326-331 (2002).

57. Knighton,D.R. et al. Structure of and kinetic channelling in bifunctional dihydrofolate reductase-thymidylate synthase. Nat. Struct. Biol. 1, 186-194 (1994).

58. Striepen,B. et al. Gene transfer in the evolution of parasite nucleotide biosynthesis. Proc. Natl. Acad. Sci. U. S. A 101, 3154-3159 (2004).

59. Brophy,V.H. et al. Identification of Cryptosporidium parvum dihydrofolate reductase inhibitors by complementation in Saccharomyces cerevisiae. Antimicrob. Agents Chemother. 44, 1019-1028 (2000).

60. Vasquez,J.R. et al. Potential antifolate resistance determinants and genotypic variation in the bifunctional dihydrofolate reductase-thymidylate synthase gene from human and bovine isolates of Cryptosporidium parvum. Mol. Biochem. Parasitol. 79, 153-165 (1996).

61. Atreya,C.E. & Anderson,K.S. Kinetic characterization of bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) from cryptosporidium hominis: A paradigm shift for TS activity and channeling behavior. J. Biol. Chem. (2004).

62. Atreya,C.E. et al. A molecular docking strategy identifies Eosin B as a non-active site inhibitor of protozoal bifunctional thymidylate synthase-dihydrofolate reductase. J. Biol. Chem. 278, 14092-14100 (2003).

63. Harwood,J.L. Recent advances in the biosynthesis of plant fatty acids. Biochim. Biophys. Acta 1301, 7-56 (1996).

64. Waller,R.F. et al. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc. Natl. Acad. Sci. U. S. A 95, 12352-12357 (1998).

65. Smith,S. The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. FASEB J. 8, 1248-1259 (1994).

66. Cronan Jr,J.E. & Rock,C.O. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Neidhardt,F.C. et al. (eds.), pp. 612-636 (American Society for Microbiology, Washington, DC,1996).

67. Zhu,G. et al. Cryptosporidium parvum: the first protist known to encode a putative polyketide synthase. Gene 298, 79-89 (2002).

68. Zhu,G., Marchewka,M.J., Woods,K.M., Upton,S.J. & Keithly,J.S. Molecular analysis of a Type I fatty acid synthase in Cryptosporidium parvum. Mol. Biochem. Parasitol. 105, 253-260 (2000).

69. Zhu,G. & Keithly,J.S. Alpha-proteobacterial relationship of apicomplexan lactate and malate dehydrogenases. J. Eukaryot. Microbiol. 49, 255-261 (2002).

70. Staunton,J. & Weissman,K.J. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18, 380-416 (2001).

71. Zhu,G. et al. Expression and functional characterization of a giant Type I fatty acid synthase (CpFAS1) gene from Cryptosporidium parvum. Mol. Biochem. Parasitol. 134, 127-135 (2004).

72. Cohen,S.S. A Guide to the Polyamines. Oxford University Press, Oxford (1998).

73. Tabor,C.W. & Tabor,H. Polyamines. Annu. Rev. Biochem. 53, 749-790 (1984).

74. Bacchi,C.J. & Yarlett,N. Biochemistry and Molecular Biology of Parasites. Marr,J.J. & Müller,M. (eds.), pp. 119-131 (Academic Press, New York,1995).

75. Majumder,S., Wirth,J.J., Bitonti,A.J., McCann,P.P. & Kierszenbaum,F. Biochemical evidence for the presence of arginine decarboxylase activity in Trypanosoma cruzi. J. Parasitol. 78, 371-374 (1992).

76. Keithly,J.S. et al. Polyamine biosynthesis in Cryptosporidium parvum and its implications for chemotherapy. Mol. Biochem. Parasitol. 88, 35-42 (1997).


Signaling and control pathways in C. hominis
77. Parsons,M. & Ruben,L. Pathways involved in environmental sensing in trypanosomatids. Parasitol. Today 16, 56-62 (2000).

78. Moreno,S.N. & Docampo,R. Calcium regulation in protozoan parasites. Curr. Opin. Microbiol. 6, 359-364 (2003).


Organelles in C. hominis: mitochondrion, apicoplast and apical organelles.
79. Tetley,L., Brown,S.M., McDonald,V. & Coombs,G.H. Ultrastructural analysis of the sporozoite of Cryptosporidium parvum. Microbiology 144 ( Pt 12), 3249-3255 (1998).

80. Riordan,C.E., Langreth,S.G., Sanchez,L.B., Kayser,O. & Keithly,J.S. Preliminary evidence for a mitochondrion in Cryptosporidium parvum: phylogenetic and therapeutic implications. J. Eukaryot. Microbiol. 46, 52S-55S (1999).

81. Riordan,C.E., Ault,J.G., Langreth,S.G. & Keithly,J.S. Cryptosporidium parvum Cpn60 targets a relict organelle. Curr. Genet. 44, 138-147 (2003).

82. Crawford,M.J., Fraunholz,M.J. & Roos,D.S. Molecular Medical Parasitology. Marr,J.J., Nilsen,T.W. & Komuniecki,R.W. (eds.), pp. 154-169 (Academic Press, New York,2003).

83. LaGier,M.J., Tachezy,J., Stejskal,F., Kutisova,K. & Keithly,J.S. Mitochondrial-type iron-sulfur cluster biosynthesis genes (IscS and IscU) in the apicomplexan Cryptosporidium parvum. Microbiology 149, 3519-3530 (2003).

84. Seeber,F. Eukaryotic genomes contain a [2Fez.sbnd;2S] ferredoxin isoform with a conserved C-terminal sequence motif. Trends Biochem. Sci. 27, 545-547 (2002).

85. Geer,L.Y., Domrachev,M., Lipman,D.J. & Bryant,S.H. CDART: protein homology by domain architecture. Genome Res. 12, 1619-1623 (2002).

86. Katinka,M.D. et al. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414, 450-453 (2001).

87. Tovar,J. et al. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426, 172-176 (2003).

88. Bahl,A. et al. PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data. Nucleic Acids Res. 31, 212-215 (2003).

89. Kissinger,J.C., Gajria,B., Li,L., Paulsen,I.T. & Roos,D.S. ToxoDB: accessing the Toxoplasma gondii genome. Nucleic Acids Res. 31, 234-236 (2003).

90. Zuther,E., Johnson,J.J., Haselkorn,R., McLeod,R. & Gornicki,P. Growth of Toxoplasma gondii is inhibited by aryloxyphenoxypropionate herbicides targeting acetyl-CoA carboxylase. Proc. Natl. Acad. Sci. U. S. A 96, 13387-13392 (1999).

91. Muhia,D.K. et al. Multiple splice variants encode a novel adenylyl cyclase of possible plastid origin expressed in the sexual stage of the malaria parasite Plasmodium falciparum. J. Biol. Chem. 278, 22014-22022 (2003).

92. Fast,N.M., Kissinger,J.C., Roos,D.S. & Keeling,P.J. Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol. Biol. Evol. 18, 418-426 (2001).

93. Dzierszinski,F. et al. The protozoan parasite Toxoplasma gondii expresses two functional plant-like glycolytic enzymes. Implications for evolutionary origin of apicomplexans. J. Biol. Chem. 274, 24888-24895 (1999).

94. Lang-Unnasch,N., Reith,M.E., Munholland,J. & Barta,J.R. Plastids are widespread and ancient in parasites of the phylum Apicomplexa. Int. J. Parasitol. 28, 1743-1754 (1998).

95. Spano,F. et al. Molecular cloning and expression analysis of a Cryptosporidium parvum gene encoding a new member of the thrombospondin family. Mol. Biochem. Parasitol. 92, 147-162 (1998).

96. Deng,M. et al. Cryptosporidium parvum genes containing thrombospondin type 1 domains. Infect. Immun. 70, 6987-6995 (2002).

97. Tosini,F., Agnoli,A., Mele,R., Gomez Morales,M.A. & Pozio,E. A new modular protein of Cryptosporidium parvum, with ricin B and LCCL domains, expressed in the sporozoite invasive stage. Mol. Biochem. Parasitol. 134, 137-147 (2004).

98. Beyer,T.V., Svezhova,N.V., Radchenko,A.I. & Sidorenko,N.V. Parasitophorous vacuole: morphofunctional diversity in different coccidian genera (a short insight into the problem). Cell Biol Int. 26, 861-871 (2002).

99. Stedman,T.T., Sussmann,A.R. & Joiner,K.A. Toxoplasma gondii Rab6 mediates a retrograde pathway for sorting of constitutively secreted proteins to the Golgi complex. J. Biol. Chem. 278, 5433-5443 (2003).

100. Liendo,A. et al. Toxoplasma gondii ADP-ribosylation factor 1 mediates enhanced release of constitutively secreted dense granule proteins. J. Biol. Chem. 276, 18272-18281 (2001).

101. Aikawa,M. Malaria: Principles and Practice of Malariology. Wernsdorfer,W.H. & McGregor I. (eds.), pp. 97-129 (Churchill Livingstone, Edinburgh, UK,1988).

102. Chaturvedi,S. et al. Constitutive calcium-independent release of Toxoplasma gondii dense granules occurs through the NSF/SNAP/SNARE/Rab machinery. J. Biol. Chem. 274, 2424-2431 (1999).

103. Ngo,H.M. et al. AP-1 in Toxoplasma gondii mediates biogenesis of the rhoptry secretory organelle from a post-Golgi compartment. J. Biol. Chem. 278, 5343-5352 (2003).

104. Tzipori,S. & Griffiths,J.K. Natural history and biology of Cryptosporidium parvum. Adv. Parasitol. 40, 5-36 (1998).

105. Perkins,M.E., Riojas,Y.A., Wu,T.W. & Le Blancq,S.M. CpABC, a Cryptosporidium parvum ATP-binding cassette protein at the host-parasite boundary in intracellular stages. Proc Natl. Acad. Sci. U. S. A 96, 5734-5739 (1999).
Transport in C. hominis.
106. LaGier,M.J., Zhu,G. & Keithly,J.S. Characterization of a heavy metal ATPase from the apicomplexan Cryptosporidium parvum. Gene 266, 25-34 (2001).

107. Zapata,F., Perkins,M.E., Riojas,Y.A., Wu,T.W. & Le Blancq,S.M. The Cryptosporidium parvum ABC protein family. Mol. Biochem. Parasitol. 120, 157-161 (2002).


Comparison of C. hominis and C. parvum genomes.
108. Widmer,G. et al. Animal propagation and genomic survey of a genotype 1 isolate of Cryptosporidium parvum. Mol. Biochem. Parasitol. 108, 187-197 (2000).

109. Simpson,A.G. et al. Evolutionary history of "early-diverging" eukaryotes: the excavate taxon Carpediemonas is a close relative of Giardia. Mol. Biol. Evol. 19, 1782-1791 (2002).



110. Zhu,G., LaGier,M.J., Hirose,S. & Keithly,J.S. Cryptosporidium parvum: functional complementation of a parasite transcriptional coactivator CpMBF1 in yeast. Exp Parasitol. 96, 195-201 (2000).

Download 33.66 Kb.

Share with your friends:




The database is protected by copyright ©ininet.org 2020
send message

    Main page